Statistics Lecture 10

Feb 19-8:47 AM

A piggy bank has 5 Dimes, 8 nickels, and
7 quarters. Is we randomly select one coin
1) P(Dime) = $\frac{5}{20} = \frac{1}{4} = .25$ 20 Coins
total
2) P(Nickel) = $\frac{8}{20} = \frac{2}{5} = .41$ 3) P(Quarter) = $1 - P(Quarter) = 1 - \frac{1}{20} = \frac{13}{20} = .65$

Mar 17-1:50 PM

Suppose
$$P(A) = .025$$

1) Find $P(A)$ in reduced fraction.

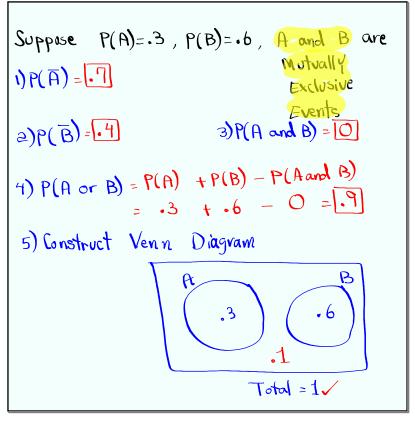
.025 MATH 1: Frac Enter $\frac{1}{40}$

2) Write $P(A)$ in $\frac{1}{10}$ Notation.

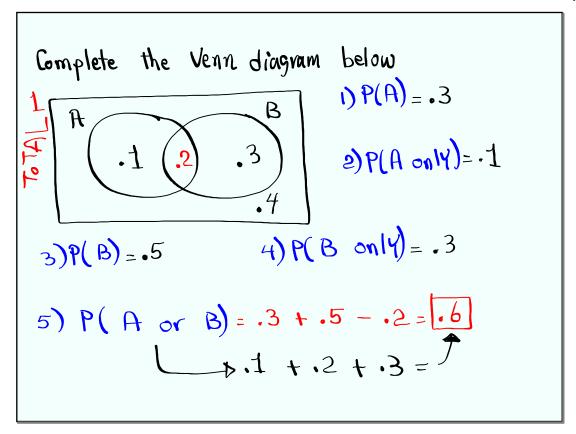
.025 = .025 (100) $\frac{1}{100}$ = 2.5 $\frac{1}{100}$

3) Sind $P(\overline{A}) = 1 - P(A) = 1 - .025 = \frac{1}{100}$

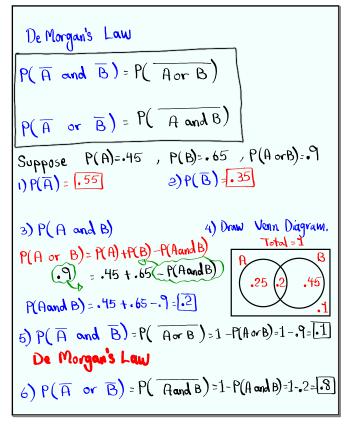
4) Simplify $\frac{P(\overline{A})}{P(A)} = \frac{.975}{.025} = \frac{.39}{.025}$


Mar 17-1:55 PM

Are you in support of mass deportation? Yes! NO! Total				
Republicans	150	30	150	If we randomly
Democrats	100	250	350	select one
Indep.	50	50	100	of them,
Total	270	330	600	224 (71)
1) P(Democrot) = 350 = 12 2) P(NO) = 330 = 11 20				
3) $P(Democrat and NO) = \frac{250}{600} = \frac{5}{12}$				
4) P(Democrat or No) = $\frac{430}{600} = \frac{43}{60}$				
5) P(Republican and Independent): 0 = 0 = 0 Do not use \$\infty\$ for \$\infty\$.				


Mar 17-2:01 PM

Suppose
$$P(A) = .35$$
, $P(B) = .75$, $P(A \text{ and } B) = .15$
1) $P(\overline{A}) = 1 - P(A)$ $= .65$
3) $P(\overline{A} \text{ and } B) = 1 - P(A \text{ and } B) = 1 - .15 = .85$
4) $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
Addition Rule $= .35 + .75 - .15$
 $= .95$
5) Construct Venn Diagram
 $P(A \text{ only}) = .35 - .15$
 $= .2$
 $P(B \text{ only}) = .75 - .15$
 $= .6$
Bonly $= .2 + .66 = .8$


Mar 17-2:13 PM

Mar 17-2:22 PM

Mar 17-2:29 PM

Mar 17-2:34 PM

```
odds vs Probability

odds in Savor of event E are

Q & b

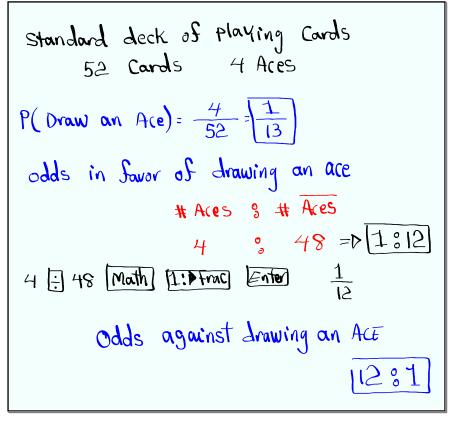
Odds against event E are b & Q

I slipped a Coin 100 times.

It landed tails 60 times.

P(Tails) = \frac{60}{100} = \frac{60}{0}

odds in Savor of landing tails are


60 tails & 40 tails

60 & 40 -D 3 & 2

odds againt

landing tails \to 2 & 3
```

Mar 17-2:48 PM


```
Suppose odds for Lakers to win the championship this Year are 1:7

1) odds against 7:1

2) Meaning of 1:7

$1 Net profit

+250 $100 $$100 $$100
```

Mar 17-2:57 PM

```
How to Sind odd if P(E) is given.

Odds in Favor of event E are

P(E): P(E)

Always simplify

ex: Suppose P(E)=.025

I) P(E)=.975

2) odds in Favor of event E

P(E): P(E)

.025: .975

1:39

odds against 39:1
```

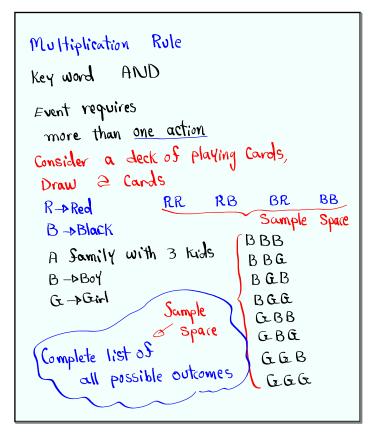
Mar 17-3:03 PM

Mar 17-3:07 PM

How to find
$$P(E)$$
 if odds were given

 $Q \circ D$
 $P(E) = \frac{Q}{Q + D}$
 $P(E) = \frac{D}{Q + D}$

ex: Suppose odds in Javor of event


 E ove $H : 21$.

1) $P(E) = \frac{H}{H + 2I} = \frac{H}{25}$

2) $P(E) = \frac{21}{H + 2I} = \frac{21}{25}$

3) odds against E . $21:H$

Mar 17-3:11 PM

Mar 17-3:16 PM

```
Independent events

When one outcome

Joes not change

the prob. of next

outcome.

Draw 2 Cards

P(Ace) P(Ace)

P(Ace)

P(Ace)

P(Ace)

with replacement

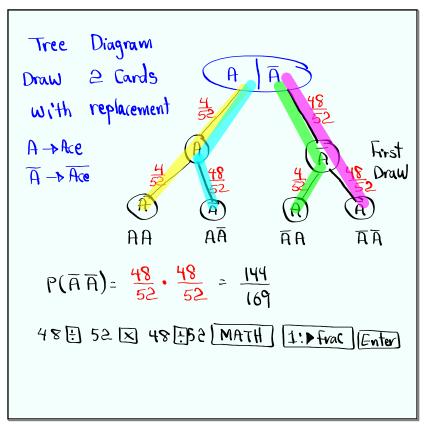
= \frac{4}{52} \cdot \frac{4}{52} = \frac{1}{13} \cdot \frac{1}{13} = \frac{1}{169}
```

You are taking a quiz with two questions.

Each question is multiple - Choice.

4 Choices one Correct choice

You make random guesses.


P(both correct) = P(correct) · P(correct)

=
$$\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$$

P(both incorrect) = P($\overline{\text{correct}}$) · P($\overline{\text{correct}}$)

= $\frac{3}{4} \cdot \frac{3}{4} = \frac{9}{16}$

Mar 17-3:28 PM

